Genomic approaches to the initiation of DNA replication and chromatin structure reveal a complex relationship.
نویسندگان
چکیده
The mechanisms regulating the coordinate activation of tens of thousands of replication origins in multicellular organisms remain poorly explored. Recent advances in genomics have provided valuable information about the sites at which DNA replication is initiated and the selection mechanisms of specific sites in both yeast and vertebrates. Studies in yeast have advanced to the point that it is now possible to develop convincing models for origin selection. A general model has emerged, but yeast data have also revealed an unsuspected diversity of strategies for origin positioning. We focus here on the ways in which chromatin structure may affect the formation of pre-replication complexes, a prerequisite for origin activation. We also discuss the need to exercise caution when trying to extrapolate yeast models directly to more complex vertebrate genomes.
منابع مشابه
High-resolution analysis of DNA synthesis start sites and nucleosome architecture at efficient mammalian replication origins.
DNA replication origins are poorly characterized genomic regions that are essential to recruit and position the initiation complex to start DNA synthesis. Despite the lack of specific replicator sequences, initiation of replication does not occur at random sites in the mammalian genome. This has lead to the view that DNA accessibility could be a major determinant of mammalian origins. Here, we ...
متن کاملGenomic targeting of methylated DNA: influence of methylation on transcription, replication, chromatin structure, and histone acetylation.
We have developed a strategy to introduce in vitro-methylated DNA into defined chromosomal locations. Using this system, we examined the effects of methylation on transcription, chromatin structure, histone acetylation, and replication timing by targeting methylated and unmethylated constructs to marked genomic sites. At two sites, which support stable expression from an unmethylated enhancer-r...
متن کاملORChestrating the human DNA replication program.
In humans, more than 6 billion bp of DNA need to be copied accurately and completely every cell division. Given the size of human chromosomes, it would take a pair of bidirectional DNA replication forks, emanating from a single replication origin, more than 40 days to copy just chromosome 1. To duplicate the genome completely within the confines of S-phase, multiple start sites of DNA replicati...
متن کاملThe Role of chk2 in Response to DNA Damage in Cancer Cells
Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...
متن کاملTopoisomerase Inhibitors and Types of Them
Objective: In this paper, we have introduced topoisomerase inhibitors, mechanism of action and types of them. DNA topoisomerases are ubiquitous enzymes that catalyze essential enzymes to solve the topological problems accompanying key nuclear processes such as DNA replication, transcription, repair and chromatin assembly by introducing temporary single or double strand breaks in the DNA. Result...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Briefings in functional genomics
دوره 10 1 شماره
صفحات -
تاریخ انتشار 2011